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A b s t r a c t - T h e  problem of optimization of fed-batch fermentations using the substrate feed rate 
as the c~mtrol variable is singular ir nature. Previous approaches, including the boundary condition 
iteration method and transformation to a nonsingular problem using a different control variable, do 
not work welt for solving optimization of systems governed by more than four differential equations. 
The applicability of a first-order conjugate gradient algorithm for optimizing fed-batch fermentations 
was tested for systems of varing complexity. This approach does not need any variable transformation 
or a pri,~ri knowledge of the control arc sequence. Constraints on the feed rate are handled in a 
simple and direct manner. The algorithm worked yew well for three, four, and five-dimensional 
singular systems. The correctness of the optimal profile was judged by observing the variation in 
the sign of the gradient of the Hamiltonian. The gradient was found to be zero during the singular 
period and had the appropriate sign tm the boundary arcs. The optimization method based on conjuga- 
ted gradient approach can be complementary to the boundary condition iteration method for determi- 
nation of the exact optimum profile. 

INTRODUCTION 

Fed-batch mode of operation is particularly well suit- 
ed for fermentations in which celt growth rate, product 
formation rate and/or product selectivity are signifi- 
cantly sensitive to the limiting substrate concentration. 

In such cases, a control over medium feed rate results 
in an improved control over substrate concentration 
inside the bioreactor, resulting in substantial improve- 
ment in reactor productivity. Consequently, in recent 
years a growing number of studies [1-10] have been 
devoted towards investigation of optimal control prob- 
lems in fed-batch fermentations. 

Medium feed rate is often used as the col~trol wuia- 
hie in these investigations. Since feed rate appears 
linearly in the resulting Hamiltonian, the problem is 
singular in nature. Modak et al. ~.4,5] developed a 
computational algorithm for solving singular optima~ 
control problems of dimensions less than five. They 
argued that in some cases a physical insight into the 
problem can reveal the optimal sequence of maximum, 

**To whom all correspondences should be addressed. 

minimum and singular arcs. The problem of determi- 
ning the optimal feed rate was then reduced to that 
of an iteration over four variables, viz. the durations 
of the first two ,control arcs (maximum-minimum or 
minimum-maximum) and the values of two adjoint 

variables at the start of the singular period. This tech- 
nique was successfully applied to a variety of biological 
systems. A major limitation of this method, however, 
is that it is applicable only for systems, which can 

be described by less than five differential equations. 
For higher dimensional systems, the number  of possi- 
ble switches in tlhe control profile increases. This in- 
creases the possible permutations of maximum, mini- 
mum and singular arcs, thus making it vew difficult, 

if not impossible, to a pKon guess the sequence of 
control arcs. Furthermore, it increases the r umber 
of variables to be guessed. 

In an effort to ,overcome these problems Modak and 
Lim [71] proposed a transformation approach, in. which 
the original singular problem was converted to a non- 
singular one by a proper choice of state arid control 
variables. The culture volume was used as the control 
variable instead of the medium feed rate. This new 
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problem was then solved by the steepest descent 
method. In principle, this approach can be used to 
optirnize systems of any dimension. However, for sys~ 
terns with dimension greater than three, no results 
have been reported. Also, the new problem contains 
an inequality constraint on the time derivative of the 
control variable. The optimal control theory does not 
provide a satisfactow way of dealing with this con- 
straint. If this constraint is ignored, the resulting cot> 
verged control trajectory may not be optimal. 

A conjugate gradient method for functional optimi- 

zation was proposed by Lasden et al. [11]. It was pro- 
ved that the directions in function space generated 
by the conjugate gradient method are such that the 
objective function is decreased at each step. Pagurek 
and Woodside [12] extended this technique to handle 
directly saturation constraints on the control variables. 
Stutts [13] tested the usefulness of this method to 
solve singular fed-batch optimization prc,blems. The 

method worked really well with a three dimensional 
singular problem. The optimal feed rate omlputed for 

four or higher dimensional problems did not contain 
regions of maximum or minimum feed rales. This pa- 
per is concerned with investigating the applicability 

of a simple conjugate gradient approach for determi- 
ning the optimal feed rate profiles for complex biolog- 
ical systems. Pagurek and Woodside's [ii12] first order 
method was tested for biological systems of varying 
complexity. 

PROBLEM FORMULATION 

I. Necessary  opt imal i ty  condit ions  
The problem of determining the best feed rate in 

a typical fed-batch fermentation can be stated as a 

problem in the calculus of variations [2]. 

min 
F(t) I1= ~(x(t,)) (1) 

Here I1 represents  a suitably chosen performance in- 
dex (sometimes refered to as the objective function), 
x(t,) is the value of the state vector x at the fixed 
final time b (when the fermentation is over). The objec- 
tive is to minimize this performance index by a proper 
choice of the medium feed rate profile, F(t). Normally 
the substrate feed rate is constrained as, 

0 = F,,,~,,_.<_ F_< F ........ (2) 

where F,,,,~ and F,,,i,, represent the maximum and mini- 
mum allowed Ded rates, respectively. In addition, the 
state variables satisfy the following differential equa- 

tions. 

d x  

d~ . . . .  a(x)-r b(x)F, x(0) = x, (3) 

where a and b are vector functions of the state vector 
x, x,~ represents the vector of specified initial condi- 

tions. 
Pontryagin's minimum principle [14] states that the 

above minimization problem is equivalent to the mini- 
mization of the Hamiltonian defined as, 

H U[-a(x)+b(x)F].  (4) 

where the adjoint vector, L(t), is defined bv 

d), OH 
. . . . . . .  ~ z  . . . . . . . . . .  

dt 3x ' (5) 

with the specified terminal conditions given by 

0II 
;q(t , )= - -  (6) 

c~x(t,) 

The problem, as stated above, is a singular control 
problem, because the control variable (the substrate 

feed rate in this case) appears linearly in the Hamilto- 
nian, so that the minimum principle does not provide 
an explicit solution for the optimal control profile, The 
necessary conditions for optimality have beer, discus- 

sed by Bryson and Ho [15]. 
The linear dependence of the Hamiltonian on feed 

rate enables (me to determine the optimal feed rate 
by examining the coefficient of F. krh=O. If 0 is iden- 
tically zero over a finite time interval, the interval is 
called a singular interval and the corresponding feed 
rate, singular feed rate, F,. It can be deduced [4] that 
the optimal feed rate F*(t) is given by. 

F,,,,,,<O 
F*(t)=- E(t~=0 (7) 

F,,,,,,>O 

The singulm feed rate can be determined [4] as 
a function of the state and adjoint variables as 

k r (a , e -  e~a) 
F~-  (8) 

k~c,b 

Here c =  a~b and the subscript x refers to the Jacobian 
with respect to x. The singular control theory just tells 
us that the optimal control arcs can either be on the 
boundary or singular. It is not possible to determine 
the sequence and duration of these control arcs. Also, 
the singular feed rate' depends on the adjoint varia- 
bles. which are unknown. Numerical methods are he- 
nce necessary to determine the form of the optimal 
feed rate. 
2, Computat ional  method  
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Although Pagurek and Woodside [12] obtained bet- 
ter results using a second order conjugate gradient 
method for some systems, this method required deter- 
mination of a lot of complex derivatives. Moreover, 
the memory requirements are considerably higher 
compared to the simple first order conjugate gradient 
method. The latter method was used exclusively for 
numerical calculations. 

The hard constraint on the final volume, normally 
imposed during fed-hatch optimization E4], was con- 
verted to a soft constraint by modifying the objective 
function by adding a penalty function. 

min 
I1 = ~(x(t,)) + K(V(t,)-- V~) e (9) 

F(t) 

Here V(tt) is the final volume obtained by simula- 
tion, while Vr is the desired final volume. By choosing 
a proper value for the constant K, the difference IV(t,) 
-V<] can be made arbitrarily small. No penalty func- 
tions are needed for control variable constraints of 
the type given by Eq. (2). The technique used in this 
study takes care of these constraints in a simple and 
direct manner. The algorithm consists of the follow- 
ing steps. 

(1) The procedure begins with an initial guess for 
the feed rate profile, F,,(t). This profile may contain 
boundary arcs. At the same time a function w is initial- 
ized. 

w,(t)=(0{ for t ~ f~ 
1 elsewhere (10) 

Here f l  represents the control boundary region. 
(2) The state differential Eq. (3) are integrated using 

the guessed feed rate profile. The adjoint Eq. (5) are 

integrated using Eq.(6) as final conditions. 
(3) The first iteration is a steepest descent step with 

the initial gradient direction calculated using the fol- 
lowing equation. 

aH 
s,> = g~t = ~ -  (11) 

(4) The control profile for the next iterati,m is com- 
puted as 

Ft =: F,~- ct~,s,,w-~, (12) 

where c~ is chosen using a one dimensional search 
to minimize 11. A simple quadratic interpolation was 
used to implement this minimization. However, before 
171 is computed in each trial of the c,-search, F~ is trun- 
cated at the upper and lower bounds of the feed rate 
EEq. (2)]. When the ct~ is determined, the function w~ 

(t) is calculated using the procedure shown in Eq. (10). 
(5) The state and adjoint equations are integrated 

again as before using the improved feed rate profile. 
(6) The following quantities are evaluated. 

~tt 2 
L ::  j ow,g~ (t)dt (13) 

Ii 
~'= I ~  (14) 

t tere i refers to the iteration number. If j3i turns out 
to be negative, a steepest descent step is taken by 
setting it to zero. 

(7) The conjugate gradient direction, s,, is deter- 
mined using the following equation. 

s~=gs+ ~,s~ ~ (15) 

Here g, refers to the steepest descent direction. 
(8) The control profile is modified by an or-search 

as outlined in step (4). 

E ,  1=Fi ai~wi (16) 

(9) Steps 5-8 are repeated till the improvement in 
the performance index is negligible and the gradient 
of the Hamiltonian shows expected trends. 

Some comments are in order here. The algorithm 
is somewhat sensitive to the initial control profile, cho- 
sen. Some initial profiles cause the procedure to 
diverge. An important consideration is that the initial 
guessed feed rate profile should satisfy the final con- 
dition on volume. This assures that the penalty func- 
tion term in Eq. (9) is zero at the beginning. If this 
term is very large compared to ~[x(t,)], the algorithm 
concentrates more on decreasing the penalty function 
than on decreasing m 

It was found that after every few iterations, the con- 
jugate gradient technique tends to stagnate. Under 
these circmnstances the same control profile gets re- 
peated after two or three iterations. Reinitialization, 
by setting 6~ to zero (a steepest descent step), was 
found to cure this problem, hence was incorporated 
in the algorithm. The optimal number of iterations, 
before reinitialization, were found to be between 15 
and 30, depending on the system. 

An important feature of this method is that it does 
not need any variable transformation to convert the 
singular problem into a nonsingular one. Thus the dif- 
ficulties associated with differential constraints on con- 
trol variables, present in the transformation approach, 
can be completely avoided. The convergence of this 
method near the optimum is somewhat slow, but the 
only measure needed, to ensure a decrease in the 
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Table 1. Parameters used for optimization of Modak's 
three-dimensional model 

Case A B C 
(XV)o, g 1.0 1.0 1.0 
(SV)o, g 0.0 0.0 1.0 
V~, L 1.0 1.0 1.0 
V;. L 5.0 5.0 5.0 
S,, g/l 10.0 10.0 t0.0 
F,,~, L/hr 4.0 4.0 4.0 
b, hr 3s 3.8 3.8 
K 10 1000 10 

performance index at each iteration, is a smaller step 
size, 

R E S U L T S  

1. Opt imizat ion  of  a three -d imens iona l  mode l  
To test the effectiveness of the algorithm described 

above, an optimization of a simple three-dimenskmal 
model for fed-batch fermentations was attempted. The 
governing equations for this model tmn be written as, 

d 
dt (XV)=  uXV (17) 

JE: 

4 

o 

1.0- 

, /  

TIME (h r }  

(~ 0.6 . ~  
'~ ~ 0.04 X 

~ rr 0 '4  .Jto I -  j / ~ S  

m~O,2 

0.0 
o 1 2 3 4 

TIME (hr )  

Fig. 1. Three-dimensional model (Case A): Optimal trajec- 
tories of state and control variables (V: reactor 
volume, F: feed rate, X: cell mass concentration, 
and S: substrate concentration). 

d _ ~tXV 4-  
-~t(SV) = FS,: y (i8) 2- 

dV 
- - - -  = F (19) 
dt 

Here X, S, V, F, p, Y, SF and t refer to the cell mass 
concentration, limiting substrate concentration, culture 
volume, substrate feed rate, specific cell growth rate, 
cell yield, substrate concentration in the feed and time, 
respectively. The cell growth is inhibited at high sub- 
strafe concentrations, the maximum specific growth 
rate occurring at a concentration 0.24 g / L  and the 
cell yield is assumed to be ~onstant. 

S 
p (S) -  0.03-~- S+  0.5S 2 ' Y -  0.5 (20", 

The objective is to optimize the amount of cell mass 
obtained after a fixed final time t, 

rain 
FI = - (XV), + K(V(b)- V,) ~ (21) 

F(t) 

This problem has been solved by a control variable 
transformation approach [7]. It is known that the opti- 
mal singular feed rate maintains the substrate concen- 
tration constant at 0.24 g/L, thus maintaining the spe- 
cific growth rate at its maximum value. 

O- 
i l l  

7,-2- 
< 
1:I:_ 4 _ 
L~ 

- 6 -  

J 

1 2 3 
T I M E  ( h r )  

Fig. 2. Three-dimensional model (Case A): Gradient of 
the Hamiltonian (aH/dF). 

In this study three different cases were considered 
(Table 1). In Case A, the initial substrate concentration 
was set to zero. According to singular control theoD' 
the optimum feed rate profile should consist of an 
initial period of maximum feed rate followed by singu- 
lar and batch periods. This operating policy brings 
the substrate concentration to 0.24 g/L and maintains 
it there till the end of the fermentation. When the 
fermentor is full, there is a short batch period. 

The final control and state variable profiles obtained 
using the conjugate gradient method are shown in Fi- 
gure 1 and 2. The computed feed rate and substrate 
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0.0 
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TIME (hr) 

Fig. 3. Three-dimensional model (Case B): Optimal trajec- 
tories of state and control variables (V: reactor 
volume, F: feed rate, X: cell mass concentration, 
and S: substrate concentration). 
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TiME (hr) 

0.04 
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TIME (hr) 
Fig. 5. Three-dimensional model (Case C): Optimal trajec- 

tones of stale and control variables (V: reactor 
volume, F: feed rate, X: cell mass concentration, 
and S: substrate concentration). 

4 

LU 

7,2  
< 
mr" - 

o 
0 

j 
. . . . . . .  ) - ~ 3 

TIME (hr) 
Fig. 4. Three-dimensional model (Case B): Gradient of 

the Hamillonian (0H/0F). 

182 
~z 2 i \ \  
m t2{ 

O _ 

0- 

0 1 2 
TIME (hr) 

Fig. 6. Three-dimensional model (Case C): Gradient of 
the Hamiltonian (0H/0F). 

concentration profiles agree very welt with the predic- 
tions of singular control theory. The optimality of the 
converged feed profile can be established by looking 
at the gradient of Hamiltonian (aH/c~F). The gradient 
is zero over the singular region, positive during the 
batch period, and negative during the initial period 
of maximum feed rate. 

If a higher value of K is used, it is expected that 
the final volume would be closer to the desired value, 
This was tested using K=  1000 (Case B). The final 
converged feed rate profile in Case A was chosen as 
the initial guess for Case B. The results are shown 

in Figure 3 and 4,. The converged feed profile is very 
close to that obtained in Case A. The gradient of the 
Hamiltonian is a little smoother though. The final vol- 
ume was indeed closer to the desired value (5.002 
L in Case B compared to 5.056 L in Case A). 

In Case C, a higher initial substrate concentration 
was chosen. The resulting feed rate profile (Figure 
5) contains an initial batch period, which brings the 
substrate concentration down to 0,24 g/L, It is follow- 
ed by a singular period, which maintains the glucose 
concentration constant. Near the end of the fermenta- 
tion. the feed rate profile deviates a little from the 
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Table 2. Prameters used for optimization of the four-di- 
mensional model 

Case A B 
X(0), OD 0.15 0.15 
S(0), g/L 2.0 2.0 
P(0), (units/ml OD) 0.1 0.1 
V(0). L 0.6 0.6 
V, L 1.2 1.2 
S,; g/L 10.0 10.0 
F . . . . . . .  L/hr 0.2 0.6 
t,, hr 10.0 10.0 

optimum as indicated by the gradient of the ttamilto- 
nian (Figure 6). 

The conjugate gradient technique performed really 
well for this simple system. The algorithm was found 
to be robust and the choice of initial guess of feed 
profile did not affect convergence. 
2. Opt imizat ion of  a four-d imens ional  s y s t e m  

in the case of recombinant Saccharomyces cerevisiae 
with plasmid pRB58, which contains the SUC2 gene 
coding for the enzyme invertase, a four-dimensional 
model, written below, can describe the kinetics of cell 
growth and invertase production [116]. 

- ~ -  (XV) = pXV = (R,Y,, + R,'~\,)XV (22) 

d 
(SV) = FS~ - R, XV (23) 

dt 

d k~S 
dt-(PXV)= [ k,P]XV (24) 

Kp+S+K,S 2 

dV 
- -  = F (25) 
dt 

The respiratory flux, R~ and fermentative fltlx, Rt de- 
pend ,an the total glucose flux R, as follows. 

k,S 
R, = (26) K,+S 

k,S k~S and R, = R~ - R~ If R ~ > ~ - ,  R,7  
K~4-S 

else R~-R,. and R,=0 
The objective of the optimization is to maximize 

the total invertase activity at the end of the fermenta- 
tion. The final time t, is assumed to be fixed. 

min 
H .. . . .  (PXV), + K[V(t,) - V,] e (27) 

F(t) 

The parameters used for optimization are listed in 
Table 2. In Case A, the initial glucose concentration 

 o.4{ 1 

o 4 
TIME (hr) 

t_.16] 

~12- 
<QS- 
r , r  

,a 41 

o Z 

TIME (hr) 
' 12 

Fig, 7. Optimization of invertase production (Case A): 
Ootimal flow rate and gradient of the Hamiltonian. 

~ 5  

~ 4  
t u  

3 �84 

o 
o 2  
J 

O 1 

4 6 8 10 
TIME (hr) 

m ~  1,6- 
~ 0  < . 
~ J  ~ I , 2 -  
w 2  

O 

m ~  

m < 0 .  0 
0 

/ f  

/ 
/ 

~ 6 S ~o 
TIME (hr) 

Fig. 8. Optimization of invertase production (Case A): 
Optimal glucose and invertase concentration pro- 
files. 

was chosen to be 2 g/L. The optimal feed rate (Figure 
7 and 8) contains an initial maximum feed rate. which 
increases the glucose concentation to more than 5 g/L, 
thus increasing tile specific cell growth rate. At these 
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0.3 ~ 

2= 

LU 
b-  
< 

~t" 0 . 1 I  
a 

LU 
I.L 

0.0 
0 

40 �84 

\ 

2 ~, 6 
TIME (hr)  

= 

32: 

z 2 4  i 

8 o ~ -  
J i 

0 ~ ~ ; a 1o 12 
T I M E  ( h r }  

Fig. 9, Optimization of invertase production (Case B): 
Optimal flow rate and gradient of the Hamiltonian. 

glucose levels, invertase production is repressed and 
the specific activity is almost constant. This period 
is followed by a batch period, in which the glucose 
concentration slowly drops to an optimum level for 
invertase expression, resulting in a gradual increase 
in the specific invertase activity. During lhe singular 
period, the glucose concentration stays almost con- 
stant around 0.225 g/L. lnvertase production rate is 
very high during this singular phase. A small batch 
period follows, when the fermentor is full and the sin- 
gular feed rate can no longer be implemented. Thus 
the optimal feed rate clearly results in an initial high 
cell growth phase followed by a high invertase produc- 
tion rate phase. 

The effect of change in the maximum allowed feed 
rate was studied by decreasing its value to 0.2 L/hr 
(Case B, Figures 9 and 10). The only ,effect was a 
change in the duration of the maximum, batch and 
singular periods. The initial maximum feed rate period 
was longer to allow high glucose concentration, requir- 
ed to maximize cell growth at the beginning of the 
fermentation, Again the singular period maintains the 
glucose concentration at around 0.225 g/L. 

In both cases, the resulting optimal feed rate profile 
clearly shows a period of maximum feed rate followed 
by batch and singular periods. The sign of the gradient 
of the Hamiltonian shows expected trends. At the 
transitions between different control arcs, the corners 

6 �84 

o 
o 
23 2- 
J 

1- 

o i _ _  
o 

==~o 16il ~ . . i  1.2 

_ & O ,  

1 6 8 
T I M E  ( h r )  

10 

f 

/ 

~o.4 

m < ~  2 4 6 8, t0  
TIME (hr) 

Fig. 10. Optimization of iuvertase prodaetion (Case B): 
Optimal glucose and invertase concentration pro- 
files. 

in the control profile are not sharp, as opposed to 
the predictions of the singular control theory. As opti- 
mum is approached, the performance index becomes 
very insensitive to small changes in the feed rate pro- 
file. Thus the algorithm converges to a profile, which 
has corners that are smoother than the exact optimal 
feed rate profile. 
3. O p t i m i z a t i o n  o f  a f i v e - d i m e n s i o n a l  s y s t e m  

Five-dimensional systems are difficult to optimize 
with the two approaches previously developed by Mo- 
dak et al. [5, 71. A complex five-dimensional model 
was employed to verify the usefulness of conjugate 
gradient technique for solving optimization problems 
of high dimensionality. Sardonini and DiBiasio E17~ 
developed a model to explain the growth kinetics of 
a plasmid-carwing strain of S. co'evisiae. It was found 
that under phosphate-limited growth conditions in a 
selective medium, the fraction of plasinid-free cell 
population was much larger than expected. This phe- 
nomenon was explained by assuming that the plasmid- 
free cells could grow in the selective medium by using 
a metabolite M, that is secreted into the medium by 
the plasmid-carwing strain, for growth. The model 
equations describing fed-batch fermentations are giv- 
en below. 

d 
dt (X' V) = Ill - p)~" X*V (28) 
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Table3. Parameters used for optimiza6on of DiBiasio's 
five-dimensional model 

Model 
parameters 

la,,,**/hr 0.43 
K,., (rag phosphate)/L 1.1 
K,,, (mg metabolite)/L 0.21 
p 0.14 
Y~, OD per phosphate concentration 0.13 
Y,,,, OD per metabolite concentration 0.0.3 
k, mg/(L, unit OD) 13.0 

Optimization 
parameters 

(X+ V)~I, OD.L 0.1 
(X-V),,, OD.L 0.01 
(SV)o, mg 0.1 
(MV)o, mg 0.05 
V~, L 1.0 
V,. L 5.0 
S,, mg/L 6.8 
F,,,,~, L/hr 0.5 

d - - - ( X  V)=pp*X~V+M-X V (29) 
dt 

.~ t (SV)=  p+X*V t~-X V ~FS~: (30) 
Y~ Y~ 

d (MV)=kbt~X. v la X V (31) 
d t  YM 

dV 
- - -  = F (,32) 
dt 

where p =  K s + S '  g - K v + M  

In the above equations p represents the probability 
of plasmid loss upon cell division. Superscripts + and 
- represent plasmid-containing and plasmid free ce- 
lls, respectively and Y,, Y:~f are yield coefficients. 

For this system, a suitable objective m W be the 
maximization of the amount of plasmid-containing 
cells at the end of the t'erm~ntation. This can be the 
case, for example, if plasmid-containing cells constitu- 
tively produce an intrace|lular product. 

min 
H -- - (X'  V),+ K[V(b) - g]z (33) 

F(t) 

As the substrate concentration increases, the specific 
growth rate of plasmid-containing cells increases. 
However, this also results in an increase in the rate 
of production of the metabolite M, which increases 
the specific growth rate of plasmid-free cells. 

The parameters used for optimization are listed in 
Table 3. The optimal feed rate consists of an initial 
batch period, followed by a period of maximum feed 

6 
,-2, 

~4 
~W 

0 > 
u.I 0 
u -  

Z 
UJ 

7, 
< 
ll: 
o 

10F 
. . . . . . . . . . . . . . . . . . . . . . . .  

0.08- 

0 5 t0  15 20 

0.04 

0.0 

-0.04 

o (0 
TIME (hr} 

TIME (hr) 

20 

Fig. 11. Optimization of DiBiasio% model: Feed rate, vol- 
ume and gradient of the Hamiltonian (V: reactor 

volume, and F: feed rate). 

5"  

Lu 3 "  
I l l  I -  

S 

5 10 15 20 
TIME (hr) 

~'0.5  
o / Plasmid- 
~ 0.41 / e o n l a i n i n g  

~0.2- / f ' ' " 

0 5 t0 15 20 
TIME (hr) 

Fig. 12. Optimization of DiBiasio% model: Cell mass, sub- 
strate and metabolite concentration profiles (S: 
substrate concentration, and M: metabolite con- 

centration). 

rate and a batch period at the end of the fermentation 
(Figures 11-13). The optimal control profile did not 
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contain any singular arcs. Although the final time was 
chosen to be 20 hours, the cells stop growing at 
around 15 hours. Thus, for any final time I)etween 
15 and 20 hours, the optimal feed rate profiles shoukl 
be identical. The gradient of the Hamiltonian shows 
expected trends, which confirm the optimality of the 
converged feed rate profile. 

CONCLUSIONS 

A first-order conjugate gradient technique was de- 
monstrated to be effective in solving a variety of opti- 
mization problems, ranging in difficulty from a simple 
three-dimensional model to a complex five-dimension- 
al system. Although the convergence of this techni- 
que is somewhat slow, especially for the five-dimen- 
sional system, when the optimum is approached, the 
method converged to the correct optimal profile after 
a decrease in the step size. The correctness of the 
optimal profile can be judged by the variation in the 
gradient of the Hamiltonian. The gradient was found 
to be zero during singular periods, and had appro- 
priate sign on boundaG control arcs. 

A boundary condition iteration method, previously 
developed by Modak et al. [5], was successful for 
systems of low dimensionality. However, this method 
fails for high dimensional systems because of two rea- 
sons. First, it becomes more and more difficult to 
guess the control arc sequence as the system dimen- 
sion increases. Second, more adjoint variables need 
to be guessed at the junction points. The conjugate 
gradient method, on the other hand, does not need 
a priori guesses of control arc sequences. After an 
initial guess of the feed rate profile, which satisfies 
the constraint on final volume, the method proceeds 
towards the optmmm in a smooth manner, 

One of the attractive features of this method is its 
simplicity. The method does not require determination 
of many complex derivatives, which are needed for 
getting a functional form for the singular feed rate. 
It requires only a little more comDutation than the 
steepest descent approach. The presence of boundary 
arcs in the control profile actually results in a slightly 
reduced computation time per iteration. 

The method proposed here does not need any var- 
iable transformation to convert the singular problem 
to a nonsingular one. This is an advantage, because 
the variable transformation result in constraints on 
the rate of change of the control variable, Appropriate 
theory to deal with such constraints is not currently 
available, Hence it is difficult to check the optimality 
of the converged control profiles obtained using the 

variable transformation method. 
The conjugate gradient technique can be used to 

compute the optimal feed rates. Because this method 
does not use an explicit functional form for the singu- 
lar feed rate, the converged feed rate profiles are not 
sharp at the corners of different control arcs. But in 
most cases, starting from an arbitrary" initial guess of 
the feed rate, the method is able to get quite close 
to the optimal feed rate so fast. Thus within a few 
iterations, the general shape-the sequence of maxi- 
mum, minimum and singular control arcs of the opti- 
mal profile-can be deduced without any a priori inR)r- 
marion. This sequence can then be used to calculate 
the optimal profile by Modak's [5] boundary condition 
iteration method. The conjugate gradient method can 
also provide good initial guesses for the switchirtg ti- 
mes and adjuint wtriables to the boundary condition 
iteration method. Thus the approach developed here, 
and the houndaw condition iteration approach develo- 
ped by Modak, can be used in a complementaw man- 
ner. 
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NOMENCLATURE 

F :fraction of plasmid-free cells, or feed rate L/ 
hr 

g : gradient of the Hamiltonian with respect to the 
control vector 

H : Hamiltonian 
I :a  parameter defined in Eq,(13) 
K, k : model parameters, or weight on the penalty func- 

tion 
ka :first order inactivation constant [hr ~] 
p : probability of forming a plasmid-free cell upon 

cell division 
R : fraction of glucose that is channeled through the 

fermentative pathway, or metabolic flux [(g glu- 
cose)/hr. OD] 

S :substrate concentration [g/L] 
s :conjugate gradient direction 
t : time [hr] 
V : volume ELi 
w :a  boundary function defined by Eq. (6), (12) 
X :cell mass concentration [g/L or OD] 
x : state vector 
~\, :yield of respirator T pathway [OD/(g. glucose)] 
Yv : yield of fermentative pathway [OD/(g. glucose)] 
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Greek Letters 
a :a search parameter in the conjugate gradient 

method 
13 :a search parameter in the conjugate gradient 

method 
~. :adjoint vector, or costate vector 
~a :specific cell growth rate [hr] 
II :performance index, or objective function 
n :invertase formation rate EKU/hr] 
0 :gradient of Hamiltonian in singular problems 

Superscripts  
+ : plasmid-containing cells 
- : plasmid4ree cells 
* : optimal 
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